
Model Criticism in Latent Space

Sohan Seth

University of Edinburgh, School of Informatics, Edinburgh, EH8 9AB, UK

September 10, 2019

Seth Model Criticism in Latent Space 1/14



Bayesian Modelling

Estimate the mean µ of n observations

µ ∼ N (µ0, σ2
0 ) (prior)

Xi | µ ∼ N (µ, σ2) (likelihood)

• X denotes observed variables
• U denotes unknown variables
• γ denotes known variables

• X = {X1, X2, . . . , Xn}
• U = {µ}
• γ = {µ0, σ2

0 , σ2}

Bayes’ rule

pU |X(u | xobs, γ) =
pX |U(xobs | u, γ)pU(u | γ)

pX(xobs | γ)
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Motivation

• Statistical models are approximation of complex natural processes
• “all models are wrong but some are useful” [Box and Draper, 1987, p. 424]
• Is the simplification meaningful?
• Are the assumptions we make reasonable?
• Knowing the limitations can guide us to build a better model
• Model criticism is the process of assessing the limitations of a model

[SOURCE]

Figure: Anscombe’s Quartet [Francis Anscombe 1973]
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Model Criticism in Observation Space

“if the model fits, then replicated data [Xrep] generated under the model should look similar to
observed data [in terms of discrepancy measure D]” [Gelman et al., 2004, p. 165]

• prior predictive p-value [Box, 1980]

pprior = Pr(D(Xrep, U) > D(xobs, U)) where Xrep, U ∼ P(X, U) (1)

• posterior predictive p-value [Rubin, 1984]

ppost = Pr(D(Xrep, U) > D(xobs, U) | xobs) where Xrep, U ∼ P(X, U | xobs) (2)

D(x, u) =
1
n

n

∑
i=1

(xi − x̄)2
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Model Criticism in Latent Space

Posterior predictive check requires [Johnson, 2007]
1 generating replicate observations
2 crafting an appropriate discrepancy measure
3 approximating the null distribution, and
4 “double use” of data

If the model fits, then posterior inferences should match the prior assumptions.

xobs ∼ P(X) and u∗ | xobs ∼ PU |X(u | xobs)⇒ (u∗, xobs) ∼ PU,X(u, x)⇒ u∗ ∼ P(U)

If xobs is a sample from P(X | γ), then a sample u∗ from P(U | xobs, γ) will be a draw from P(U | γ).

u∗1 , . . . , u∗m 6∼ P(U | γ), i.e., m posterior samples are not independent samples from the prior
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Aggregated Posterior Check

Require: Observed data xobs

Require: Bayesian model P(X |U, γ)P(U | γ) with latent variables U
1: Generate a posterior sample u∗ from P(U | xobs, γ)
2:

Generate aggregated posterior sample

3: Compare

aggregated posterior

sample with corresponding prior distribution
4: return p-value of the test

(1) µ∗ ∼ N (µ0, σ2
0 ) and (2)X1, . . . , Xn ∼ N (µ∗, σ2) (3)

• Often U is a collection of variables, i.e., U = (U1, . . . , UK), and P(U | γ) = ∏K
k=1 Pu(Uk | γ)

• Instead of testing if (u∗1 , . . . , u∗K) is a sample from P(U | γ), test if the aggregated variables
{u∗1 , . . . , u∗K} is independent and identical draws from Pu(· | γ).
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1. Probabilistic Matrix Factorization

For i = 1, . . . , n

zi ∼ LatentDist | τz (4)

xi ∼ N (Θzi + b, τ
−1I) (5)

Given Z∗ = [z∗1 , . . . , z∗n] and τ∗z , (e.g., zi ∼ N (0, τz
−1I))

{z∗ki} ∼ P(z | τ∗z ) (univariate)

{(z∗k1i, z∗k2i) : k1 6= k2} ∼ P(z1, z2 | τ∗z ) (bivariate)
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1. Image Patches [Zoran and Weiss, 2012]

n = 50, 000, 8 × 8 image patches, i.e., m = 64 and we consider k = 16

τz ∼ Gamma(α, β), z ∼ N (0, τz
−1
), (6)

Figure: Dotted line is the prior distribution and straight line is the aggregated posterior
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1. Image Patches [Zoran and Weiss, 2012]

n = 50, 000, 8 × 8 image patches, i.e., m = 64 and we consider k = 16

π ∼ Dir(1), τm ∼ Gamma(α, β), z ∼
8

∑
m=1

πmN (0, τm
−1I) (6)

Figure: Dotted line is the prior distribution and straight line is the aggregated posterior
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2. Linear Dynamical Systems

s1 = 1, z1 ∼ N (0, I) (7)

st ∼ Cat(π(st−1)) ∀t = 2, . . . , n (8)

zt ∼ A(st)zt−1 + εt, εt ∼ N (0, Q(st)−1
) ∀t = 2, . . . , n (9)

xt ∼ Bzt + ψt, ψt ∼ N (0, R−1
) ∀t = 1, . . . , n (10)

Standardized residuals follow N (0, I) distribution

• standardized latent residuals

z̃t = (Q(s∗t )∗)0.5(z∗t −A(s∗t )∗z∗t−1) ∀ t = 2, . . . , n, (11)

• standardized observation residuals (or innovations)

x̃t = (R∗)0.5(xobs
t − B∗z∗t ) ∀ t = 2, . . . , n. (12)
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2. Honey Bee

• Four measurements of (x, y) coordinate and cosine and sine of head angle (ν)
• Three distinct dynamical regimes, namely, left turn, right turn and waggle
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3. Gaussian Process Regression

ϑ, ζ, τ ∼ p(ϑ) p(ζ) p(τ), (13)

f (x) ∼ GP(m(x | ϑ), κ(x, x′ | ζ)), (14)

yi ∼ N (f (xi), τ
−1
) ∀i = 1, . . . , n, (15)

m = (m(x1 | ϑ), . . . , m(xn | ϑ))> (16)

Kij = κ(xi, xj | ζ) + τ
−1

δ(xi, xj) (17)

y ∼ N (m, K) (18)

K = UΛU> (19)

c = U>(y−m) ∼ N (0, Λ) (20)

z = Λ
−1/2U>(y−m) ∼ N (0, I) (21)

[SOURCE]

Given ν∗, ζ∗, τ∗

{z∗1 , . . . , z∗n} ∼ N (0, 1) (22)
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3. CO2 Emmision

κse(x, x′ | ζ) = σ2
f exp

(
− (x− x′)2

2l2

)
(23)
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3. CO2 Emmision

κpe(x, x′ | ζ) = σ2
f exp

(
− 2 sin2(π(x− x′)/p)

l2p

)
exp

(
− (x− x′)2

2l2d

)
(23)
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3. CO2 Emmision

κse(x, x′ | ζs) + κse(x, x′ | ζl) + κpe(x, x′ | ζ) (23)
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Discussion

• Model criticism goodness-of-fit and graphical illustration for understanding a limitations of
the model with the hope that a better model can be found

• The term model criticism is preferred over model validation and model checking since the former
has a more active tone of looking to discover problems, while the latter may seem a more
passive activity that does not expect to uncover any problems O’Hagan [2003, p423].

• Model criticism is contrasted with model comparison in that model criticism assesses a single
model, while model comparison deals with at least two models to decide which model is a
better fit.

• Model comparison can be applied to compare the original and the extended model after
model criticism and extension [O’Hagan, 2003, p. 2].

• Aggregated Posterior Check complements Posterior Predictive Check by criticising the latent
space rather than the observation space, and has been used in the literature in different forms
Meulders et al. [1998], Buccigrossi and Simoncelli [1999], O’Hagan [2003], Tang et al. [2012]

Sohan Seth, Iain Murray, and Christopher K. I. Williams.
Model Criticism in Latent Space.
Bayesian Analysis, 14(3):703–725, 2019.
https://projecteuclid.org/euclid.ba/1560240024.
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Thank you for your patience!
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