Retrieval of Experiments by Efficient Comparison of Marginal Likelihoods

Sohan Seth¹, John Shawe-Taylor², Samuel Kaski^{1,3}

1 Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science, Aalto University, Espoo, Finland 2 Centre for Computational Statistics and Machine Learning, Department of Computer Science, University College London, UK 3 Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland

- Information retrieval: obtain information relevant to a user's need e.g, web pages, documents, images etc.
- ▶ Objective: information retrieval for biological datasets or experiments
- by 'experiment' we mean a collection of measurements from a set of 'covariates' and the associated 'outcomes'
 - i.e., in general any experiment performed, e.g., to validate a hypothesis

イロト イポト イヨト イヨト

2/16

- Information retrieval: obtain information relevant to a user's need e.g, web pages, documents, images etc.
- ▶ Objective: information retrieval for biological datasets or experiments
- by 'experiment' we mean a collection of measurements from a set of 'covariates' and the associated 'outcomes'
 - i.e., in general any experiment performed, e.g., to validate a hypothesis

in particular,

in functional genomics: microarray measurements from patients and healthy persons

in toxicogenomics: post-treatment microarray measurements from cell lines, and the associated toxicity values

イロト イポト イヨト イヨト

SOR

run experiment \rightarrow publish findings \rightarrow release data to databank

run experiment \rightarrow publish findings \rightarrow release data to databank

e.g, to ArrayExpress for functional genomics experiments

http://www.ebi.ac.uk/arrayexpress/

run experiment \rightarrow publish findings \rightarrow release data to databank

e.g, to ArrayExpress for functional genomics experiments

http://www.ebi.ac.uk/arrayexpress/

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

► data = measurements over covariates and outcomes + associated metadata e.g., in functional genomics: disease, disease state, cell type

Seth, Shawe-Taylor, Kaski

► search relevant scientific articles, use citations

3

(日本) (日本) (日本)

- ► search relevant scientific articles, use citations
- ▶ search relevant metadata (keywords) in databanks,
 - e.g., use experimental factor ontology

EMBL-EBI	Services Research Training About us
Experimental Factor Ontology	Search EFO Search EAL U-Fisureri antione
Home Browse EFO Submit Term Semantic Web Project	
Representing experimental variables with EFO	
The Experimental Factor Ontology (EFC provides a systematic description of many experimental variables available in EBI databases, of of or external projects such as the NHGRI GWAS catalogue. It combines parts of several biological entologies, such as anatomy, disease and chemical compounds. The scope of EFO is to support the annotation, analysis and visualization of data handled by the EBI Englicitual Genomics Team. We also add terms for external users when requested. If you are new to entologies, there is a <u>short introduction</u> on the subject available and a biog post by James Malone on what entologies are for.	

http://www.ebi.ac.uk/efo/

* 伊 ト * ヨ ト * ヨ ト

Searching relevant datasets: issues

- ▶ metadata usually vary with user, e.g., cancer and carcinoma,
- ▶ metadata can often be incomplete,

Э

・ 同 ト ・ ヨ ト ・ ・ ヨ ト …

Searching relevant datasets: issues

- ▶ metadata usually vary with user, e.g., cancer and carcinoma,
- ▶ metadata can often be incomplete,

BIOINFORMATICS

Vol. 23 ISMB/ECCB 2007, pages i41–i48 doi:10.1093/bioinformatics/btm229

イロト イポト イラト イラト

Manual curation is not sufficient for annotation of genomic databases

William A. Baumgartner, Jr.^{1,*,†}, K. Bretonnel Cohen^{1,†}, Lynne M. Fox², George Acquaah-Mensah³ and Lawrence Hunter^{1,*}

¹Center for Computational Pharmacology, University of Colorado School of Medicine, ²Denison Library, University of Colorado Health Science Center and ³Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, USA

Searching relevant datasets: next step

search by comparing the measurements not metadata (annotations),
e.g., for microarray datasets search with samples × probes matrix

不得下 不足下 不足下

Searching relevant datasets: next step

search by comparing the measurements not metadata (annotations),
e.g., for microarray datasets search with samples × probes matrix

BIOINFORMATICS

Vol. 25 ISMB 2009, pages i145–i153 doi:10.1093/bioinformatics/btp215

イロト イポト イモト イモト

Probabilistic retrieval and visualization of biologically relevant microarray experiments

José Caldas^{1,*}, Nils Gehlenborg^{2,3}, Ali Faisal¹, Alvis Brazma² and Samuel Kaski¹

¹Helsinki Institute for Information Technology, Department of Information and Computer Science, Helsinki University of Technology, Finland, ²Microarray Team, European Bioinformatics Institute and ³Graduate School of Life Sciences, University of Cambridge, Cambridge, UK

"find unexpected things in addition to the already known things available for metadata searches"

- ▶ the basic intuition is to compare characteristics of the measurements
 - e.g., are the same genes being enriched?
 - e.g., are the same genes being associated?

Seth, Shawe-Taylor, Kaski

 utilize researcher's expertise in retrieval in terms of modeling by model we mean generative model, or posterior distribution over parameters

posterior \propto likelihood (measurements) \times prior (expertise)

イロト イポト イヨト イヨト

 utilize researcher's expertise in retrieval in terms of modeling by model we mean generative model, or posterior distribution over parameters

posterior \propto likelihood (measurements) \times prior (expertise)

▶ given model we can use marginal likelihood as a measure of similarity

probability(query dataset | model of earlier dataset)

イロト イポト イヨト イヨト

Searching relevant datasets: summary

release measurements + metadata + model to databank

< A > <

Searching relevant datasets: summary

release measurements + metadata + model to databank

however, hypothetical situation: we do not have models from researchers pilot studies are based on fitting our own model on datasets

Seth, Shawe-Taylor, Kaski

▲ @ ▶ ▲ 三 ▶ ▲

8/16

Current work: background

- experiment \equiv collection of measurements over covariates and outcomes, i.e., $\mathcal{E}_d = \{(c_{di}, o_{di})\}_{i=1}^{n_d}$.
- each experiment \mathcal{E}_d has been modeled as \mathcal{M}_d ,
- model \equiv a collection of posterior MCMC samples,

i.e., $\mathcal{M}_d = \{\theta_{dk}\}_{k=1}^{m_d}$

不同下 不同下 不同下

Current work: background

- experiment \equiv collection of measurements over covariates and outcomes, i.e., $\mathcal{E}_d = \{(c_{di}, o_{di})\}_{i=1}^{n_d}$.
- each experiment \mathcal{E}_d has been modeled as \mathcal{M}_d ,
- model \equiv a collection of posterior MCMC samples,

i.e., $\mathcal{M}_d = \{\theta_{dk}\}_{k=1}^{m_d}$

model can be used for retrieval in different ways

- 1 explain query dataset \mathcal{E}_q as combination of previous datasets (Faisal et al.)
- 2 given query model \mathcal{M}_q , observe overlap with previous models (Dutta et al.)

イロト イポト イラト イラト

9/16

Current work: background

- experiment \equiv collection of measurements over covariates and outcomes, i.e., $\mathcal{E}_d = \{(c_{di}, o_{di})\}_{i=1}^{n_d}$.
- each experiment \mathcal{E}_d has been modeled as \mathcal{M}_d ,
- model \equiv a collection of posterior MCMC samples,

i.e., $\mathcal{M}_d = \{\theta_{dk}\}_{k=1}^{m_d}$

model can be used for retrieval in different ways

- 1 explain query dataset \mathcal{E}_q as combination of previous datasets (Faisal et al.)
- 2 given query model \mathcal{M}_q , observe overlap with previous models (Dutta et al.)
- 3 rank existing models $\{M_i : i = 1, \dots, d, \dots, D\}$ in terms of marginal likelihood

$$\mathrm{ML}_{q|d} = \mathbb{E}_{p(\cdot|\mathcal{E}_d)} p(\mathcal{E}_q|\cdot)$$

イロト イポト イヨト イヨト

Current work: faster retrieval

given posterior samples

(unweighted average)
$$\widehat{\mathrm{ML}}_{q|d} = \frac{1}{m_d} \sum_{k=1}^{m_d} p(\mathcal{E}_q | \theta_{dk})$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Current work: faster retrieval

given posterior samples

(unweighted average)
$$\widehat{\mathrm{ML}}_{q|d} = \frac{1}{m_d} \sum_{k=1}^{m_d} p(\mathcal{E}_q | \theta_{dk})$$

▶ however, evaluating m_d marginal likelihood can be expensive

< ロト < 同ト < 三ト < 三ト

3

Current work: faster retrieval

given posterior samples

(unweighted average)
$$\widehat{\mathrm{ML}}_{q|d} = \frac{1}{m_d}\sum_{k=1}^{m_d} p(\mathcal{E}_q|\theta_{dk})$$

 \blacktriangleright however, evaluating m_d marginal likelihood can be expensive

Seth, Shawe-Taylor, Kaski

Retrieval of Experiments by Efficient Comparison of Marginal Likelihoods

nan 10/16

▶ find fewer important samples that can be used for retrieval

(weighted average)
$$\widetilde{\mathrm{ML}}_{q|d} \approx \sum_{k=1}^{m_d} w_{dk} p(\mathcal{E}_q | \theta_{dk})$$

where $w_d = [w_{d1}, \dots, w_{dm_d}]$ is a vector of sparse weights (ideally) non-negative and sum to one.

▶ learn the weights by preserving ranking with respect to $\widehat{\mathrm{ML}}_{q|d}$

イロト イポト イヨト イヨト

SOR

Current work: optimization

- training set $\{\mathcal{E}_d\}_{d=1}^D$
- consider a triplet (i₁, i₂, i₃) ∈ {1,...,D}³, use i₃ ≡ q as query and rank the (i₁, i₂)
- without loss of generality, assume $\widehat{\mathrm{ML}}_{q|i_1} > \widehat{\mathrm{ML}}_{q|i_2}$, (unweighted average) then ensure $\widetilde{\mathrm{ML}}_{q|i_1} > \widetilde{\mathrm{ML}}_{q|i_2}$, (weighted average) i.e.,

$$\sum_{k} w_{i_1k} p(\mathcal{E}_q | \theta_{i_1k}) > \sum_{k} w_{i_2k} p(\mathcal{E}_q | \theta_{i_2k})$$

Current work: optimization

- training set $\{\mathcal{E}_d\}_{d=1}^D$
- consider a triplet (i₁, i₂, i₃) ∈ {1,...,D}³, use i₃ ≡ q as query and rank the (i₁, i₂)
- without loss of generality, assume $\widehat{\mathrm{ML}}_{q|i_1} > \widehat{\mathrm{ML}}_{q|i_2}$, (unweighted average) then ensure $\widetilde{\mathrm{ML}}_{q|i_1} > \widetilde{\mathrm{ML}}_{q|i_2}$, (weighted average) i.e.,

$$\sum_{k} w_{i_1k} p(\mathcal{E}_q | \theta_{i_1k}) > \sum_{k} w_{i_2k} p(\mathcal{E}_q | \theta_{i_2k})$$

or,

$$\begin{split} [+p(\mathcal{E}_{q}|\theta_{i_{1}1}),\ldots,+p(\mathcal{E}_{q}|\theta_{i_{1}m_{i_{1}}}),-p(\mathcal{E}_{q}|\theta_{i_{2}1}),\ldots,-p(\mathcal{E}_{q}|\theta_{i_{2}m_{i_{2}}})]\\ [w_{i_{1}1},\ldots,w_{i_{1}m_{i_{1}}},w_{i_{2}1},\ldots,w_{i_{2}m_{i_{2}}}]^{\top} > 0 \end{split}$$

- 不同下 不同下 不同下

Current work: optimization

- training set $\{\mathcal{E}_d\}_{d=1}^D$
- consider a triplet (i₁, i₂, i₃) ∈ {1,...,D}³, use i₃ ≡ q as query and rank the (i₁, i₂)
- without loss of generality, assume $\widehat{\mathrm{ML}}_{q|i_1} > \widehat{\mathrm{ML}}_{q|i_2}$, (unweighted average) then ensure $\widetilde{\mathrm{ML}}_{q|i_1} > \widetilde{\mathrm{ML}}_{q|i_2}$, (weighted average) i.e.,

$$\sum_{k} w_{i_1k} p(\mathcal{E}_q | \theta_{i_1k}) > \sum_{k} w_{i_2k} p(\mathcal{E}_q | \theta_{i_2k})$$

or,

$$\begin{split} & [w_{i_{1}1}), \dots, +p(\mathcal{E}_{q}|\theta_{i_{1}m_{i_{1}}}), -p(\mathcal{E}_{q}|\theta_{i_{2}1}), \dots, -p(\mathcal{E}_{q}|\theta_{i_{2}m_{i_{2}}})] \\ & [w_{i_{1}1}, \dots, w_{i_{1}m_{i_{1}}}, w_{i_{2}1}, \dots, w_{i_{2}m_{i_{2}}}]^{\top} > 0 \end{split}$$

- each binary label corresponds to a triplet
- · linear classification problem with sparse design matrix
- learn $w = [w_1, \ldots, w_d]$, weight vector for each experiment

Seth, Shawe-Taylor, Kaski

伺い イヨト イヨト

Landmine

29 experiments: two classes 16-13 each experiment is a classification problem 9 features, ~500 samples

Restaurant

119 experimentseach experiment is a regression problem22 binary features, 3-18 samples

< A > 4

13/16

Preliminary results: toxicogenomic data

- covariates: post treatment gene expression, outcome: toxicity
- 65 drugs (experiments), 26-44 cell lines (samples)
- 1000 genes (LINCS, Library of Integrated Network-based Cellular Signatures),
- associated toxicity (CTD², Cancer Target Discovery and Development)

Ack: Suleiman Ali Khan, HIIT; Aravind Subramanian, Broad Institute

Seth, Shawe-Taylor, Kaski Retrieval of Experiments by Efficient Comparison of Marginal Likelihoods 14/16

Summary

▶ general

retrieval of biological datasets or experiments metadata driven search \rightarrow content driven search suggest releasing models, model captures expertise

► specific

reducing likelihood evaluation to speed up retrieval preliminary results are promising

ongoing

larger validation set: toxicogenomic datasets, ArrayExpress affymetrix dataset

イロト イポト イヨト イヨト

► HIIT personnel

Ali Faisal, Elisabeth Greorgii, Jaakko Peltonen, Ritabrata Dutta

EBI collaborators
Alvis Brazma, Ugis Sarkans

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nan

16/16

Э

► HIIT personnel

Ali Faisal, Elisabeth Greorgii, Jaakko Peltonen, Ritabrata Dutta

EBI collaborators
Alvis Brazma, Ugis Sarkans

Thank You! Questions?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3