Sohan Seth

University of Edinburgh, School of Informatics, Edinburgh, EH8 9AB, UK

September 11, 2019

THE UNIVERSITY of EDINBURGH

ヘロト 人間 とくほとくほど

Archetypal Analysis

- Archetypes are prototypes, i.e., representative observations, that are ideal examples of a type
- Archetypes are interpretable since they relate to actual observations
- Archetypes are extreme in nature rather than average, for example, as in medoids

イロト 不得 とくほとくほう

Archetypal Analysis

- Archetypes are prototypes, i.e., representative observations, that are ideal examples of a type
- Archetypes are interpretable since they relate to actual observations
- Archetypes are extreme in nature rather than average, for example, as in medoids

Can we find archetypes for observations that are not real valued?

	Favorite	Marital		
Obs.	sports	status	Gender	
1	Tennis	Single	Female	
2	Golf	Divorced	Male	
3	Soccer	Divorced	Male	
4	Soccer	Divorced	Male	
5	Golf	Married	Female	
6	Tennis	Married	Female	
7	Tennis	Married	Male	
8	Golf	Single	Male	
9	Tennis	Single	Female	
10	Golf	Divorced	Male	
:				

Intuition

- Assume that the observations originate from a parametric probability distribution
- Perform archetypal analysis in the parameter space

Probabilistic principal component analysis

$$\mathbf{h}_n \sim \mathcal{N}(0, \mathbf{I}) \tag{1}$$

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{Z}\mathbf{h}_n, \sigma^2 \mathbf{I})$$
 (2)

Probabilistic vertex component analysis

$$\mathbf{h}_n \sim \mathrm{Dir}(\mathbf{1}) \tag{3}$$

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{Z}\mathbf{h}_n, \sigma^2 \mathbf{I})$$
 (4)

Intuition

- Assume that the observations originate from a parametric probability distribution
- Perform archetypal analysis in the parameter space

Probabilistic principal component analysis

$$\mathbf{h}_n \sim \mathcal{N}(0, \mathbf{I}) \tag{1}$$

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{Z}\mathbf{h}_n, \sigma^2 \mathbf{I})$$
 (2)

Probabilistic vertex component analysis

$$\mathbf{h}_n \sim \mathrm{Dir}(\mathbf{1})$$
 (3)

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{Z}\mathbf{h}_n, \sigma^2 \mathbf{I})$$
 (4)

Probabilistic archetypal analysis: given Θ

$$\mathbf{w}_k \sim \mathrm{Dir}(\mathbf{1})$$
 (5)

$$\mathbf{h}_n \sim \mathrm{Dir}(\mathbf{1})$$
 (6)

$$\mathbf{x}_n \sim \mathcal{N}(\mathbf{\Theta W} \mathbf{h}_n, \sigma^2 \mathbf{I})$$
 (7)

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

$$\operatorname{ExpFam}(\mathbf{x}; \boldsymbol{\psi}) = h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$$
(9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., $[1.1, 0.3, 2.7]^{\top}$
 - ψ is a vector of means, standard archetypal analysis

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

$$\operatorname{ExpFam}(\mathbf{x}; \boldsymbol{\psi}) = h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$$
(9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., [1.1, 0.3, 2.7][⊤]
 ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

ExpFam($\mathbf{x}; \boldsymbol{\psi}$) = $h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$ (9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., [1.1, 0.3, 2.7][⊤]
 ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates
- Bernoulli for binary observations, i.e., [*True*, *False*, *True*]^T
 ψ is a vector of probabilities

・ロト ・回ト ・ヨト ・ヨト

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

ExpFam($\mathbf{x}; \boldsymbol{\psi}$) = $h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$ (9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., $[1.1, 0.3, 2.7]^{\top}$ ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates
- Bernoulli for binary observations, i.e., [*True*, *False*, *True*]^T
 ψ is a vector of probabilities
- Multinomial for term-frequency values, i.e., [60, 51, 42][⊤]
 ψ is a stochastic vector (number of trials is known)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

ExpFam($\mathbf{x}; \boldsymbol{\psi}$) = $h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$ (9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., [1.1, 0.3, 2.7][⊤]
 ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates
- Bernoulli for binary observations, i.e., [*True*, *False*, *True*]^T
 ψ is a vector of probabilities
- Multinomial for term-frequency values, i.e., [60, 51, 42][⊤]
 ψ is a stochastic vector (number of trials is known)
- S Multinomials for categorical observations, i.e., [*Tennis*, *Single*, *Female*][⊤]

 ψ is a stochastic 'matrix' (number of trials is known)

・ロト ・四ト ・ヨト ・ヨト

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

ExpFam($\mathbf{x}; \boldsymbol{\psi}$) = $h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$ (9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., [1.1, 0.3, 2.7][⊤]
 ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates
- Bernoulli for binary observations, i.e., [*True*, *False*, *True*]^T
 ψ is a vector of probabilities
- Multinomial for term-frequency values, i.e., [60, 51, 42][⊤]
 ψ is a stochastic vector (number of trials is known)
- Multinomials for categorical observations, i.e., [*Tennis*, *Single*, *Female*][↑]

 ψ is a stochastic 'matrix' (number of trials is known)

ヘロト 人間 トイヨト イヨト

$$\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{\Theta}\mathbf{W}\mathbf{h}_n)$$
 (8)

where

ExpFam($\mathbf{x}; \boldsymbol{\psi}$) = $h(\mathbf{x})g(\boldsymbol{\psi})\exp(\boldsymbol{\eta}(\boldsymbol{\psi})^{\top}\mathbf{s}(\mathbf{x}))$ (9)

is exponential family distributions, e.g.,

- Normal for real valued observations, i.e., [1.1, 0.3, 2.7][⊤]
 ψ is a vector of means, standard archetypal analysis
- Poisson for count observations, i.e., [1, 4, 2][⊤]
 ψ is a vector of rates
- Bernoulli for binary observations, i.e., [*True*, *False*, *True*]^T
 ψ is a vector of probabilities
- Multinomial for term-frequency values, i.e., [60, 51, 42][⊤]
 ψ is a stochastic vector (number of trials is known)
- Multinomials for categorical observations, i.e., [*Tennis, Single, Female*][↑]
 ψ is a stochastic 'matrix' (number of trials is known)

We consider θ_n to be the *maximum likelihood point estimate* from observation \mathbf{x}_n

PAA solves

$$\underset{W,H \ge 0}{\arg\min} - \mathbb{LL}(X|W, H, \Theta) \text{ such that } 1W = 1, 1H = 1.$$
(10)

under suitable observation model compared to AA that solves

$$\min_{\mathbf{W},\mathbf{H}\geq 0} ||\mathbf{X} - \mathbf{X}\mathbf{W}\mathbf{H}||_{\mathrm{F}}^{2} \text{ such that } \mathbf{1}\mathbf{W} = \mathbf{1}, \mathbf{1}\mathbf{H} = \mathbf{1}$$
(11)

- This optimization problem can be solved using majorization-minimization for Poisson likelihood, and expectation maximization and variational Bayes' for multinomial observation model and the latter takes advantage of conjugacy
- *K* can be chosen using 'elbow criterion' or setting prior over **a** over **h**

Disasters worldwide 1900-2008

- complex disasters (CD),
- drought (DR),
- earthquake (EQ),
- epidemic (EP),
- S extreme temperature (ET),
- 6 flood (FL),
- industrial accident (IA),
- 8 insect infestation (II),
- 9 mass movement dry (MD),
- mass movement wet (MW),
- miscellaneous accident (MA),
- (ST),
- transport accident (TA),
- volcano (VO), and
- (WF).

SUN attribute

14340 images with 102 attributes with 4 annotations each converted to binary

- A1 outdoor sport activities
- A2 abstract images
- A3 buildings and constructions
- A4 natural blue and horizon
- A5 enclosed area
- A6 natural green and trees

Big5 Personality

19718 responses, 50 Likert-scale rated questions converted to {agree, disagree, neutral}

0.9		outgoing	outgoing	solitary	solitary	*	solitary	*			
0.3		energetic	energetic	reserved	reserved	•	reserved	•	disagree	agree	
0.1	7	secure	sensitive	sensitive	•	*	sensitive	•	alougree .	ugree	S straight
0	<u> </u>	confident	nervous	nervous	•	*	nervous	*			R reversed
0.5	5	friendly	friendly	friendly	analytical	friendly	*	*			Eextrovert
0.5		compassi.	compassi.	compassi.	detached	compassi.	*	*			
0.3	2	efficient	•	•	•	efficient	•	•			N neurotic
0.5		organized	•	•	•	organized	*	•			A agreeable
0.1	4	inventive	inventive	inventive	inventive	inventive	*	*			C conscient
0.		curious	curious	curious	curious	curious	*	*	neu	tral	O open to experience

NU COUCCIE COEC

Summary

- · PAA finds extreme representations for non-real-valued observations
- PAA also helps in choosing an appropriate number of archetypes
- PAA provides more distinguishable representation compared to clustering

Thank you for your patience!

- Sohan Seth and Manuel J. A. Eugster. Probabilistic archetypal analysis. *Machine Learning*, 102(1):85–113, January 2016.
- Sohan Seth and Manuel J. A. Eugster. Archetypal Analysis for Nominal Observations. *IEEE transactions on pattern analysis and machine intelligence*, 38(5):849–861, May 2016.
- http://aalab.github.io

イロト イボト イヨト イヨト 一日