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Archetypal Analysis

• Archetypes are prototypes, i.e., representative observations, that are ideal examples of a type
• Archetypes are interpretable since they relate to actual observations
• Archetypes are extreme in nature rather than average, for example, as in medoids
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From Value to Distribution

A single value often does not carry all the information, e.g.,
• two scientific papers can have scores {3, 3, 4} and {1, 4, 5}
• two movies can have ratings {6, 7, 9} and {4, 9, 9}.

How do we find archetypes over distributions?

Figure: (left) standard archetypal analysis (right) archetypal analysis over distributions
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Standard Archetypal Analysis [Cutler and Breiman, 1994]

Given a set of n observations x1, . . . , xn,

1 Define K archetypes z1, . . . , zK as convex combinations of the observations, i.e.,

zk =
n

∑
i=1

wikxi

where W ∈ ∆ is a n× k dimensional matrix with [W]ik = wik.

2 Reconstruct the observations as convex combinations of the archetypes, i.e.,

x̂j =
K

∑
k=1

hkjzk

where H ∈ ∆ is a k× n dimensional matrix with [H]kj = hkj.

3 Optimize the parameters W and H by minimizing the error between the observations and
their respective reconstructions, i.e.,

n

∑
i=1
||xi − x̂i||2

where || · || denotes the l2-norm. Thus, archetypal analysis can be summarized as

min
W,H∈∆

||X− XWH||2.
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Standard Archetypal Analysis [Cutler and Breiman, 1994]
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Figure 1. Archetypes for Head Dimension Data.
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Kernel Archetypal Analysis [Mørup and Hansen, 2012]

Use ‘kernel trick’ for distributions with Bhattacharyya coefficient.

• The cost can be rewritten as

||X− XWH||2 = tr((I−WH)ᵀXᵀX(I−WH))

where tr denotes the trace operation.
• The inner product [XᵀX]ij = 〈xi | xj〉 can then be replaced by a positive definite kernel

[K]ij = κ(xi, xj) = 〈φ(xi) | φ(xj)〉,

where φ is a (nonlinear) mapping from Rd to a feature space F with inner product κ.

Pros
• Allows performing archetypal analysis in any observation space with a p.d. kernel

Cons
• Result depends on the choice of kernel
• Not knowing the explicit mapping φ hinders the interpretability of the archetypes
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Interval Archetypal Analysis [D’Esposito et al., 2012]

• Each element of the matrix X is an interval, i.e., [X]lj = [xlj, x̄lj]

• Use weighted sum and distance operation with appropriate operations on interval , i.e.,

zlk =
n

∑
i=1

wikxli and z̄lk =
n

∑
i=1

wikx̄li, and

d(x, y) = max(|x̄− ȳ|, |x− y|) = |xm − ym|+ |xd − yd|

where xm = (x + x̄)/2 and xd = (x̄− x)/2.
• Archetypal analysis on intervals can be summarized as

min
W,H∈∆

|Xm − XmWH|+ |Xd − XdWH|.

Pros
• Straighforward extension of standard archetypal analysis

Cons
• Limited to intervals not continuous distributions
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Interval Archetypal Analysis [D’Esposito et al., 2012]

326 Statistical Analysis and Data Mining, Vol. 5 (2012)

in terms of distance or proximity with respect to other
data points, while bearing in mind that they may or may
not coincide with observed statistical units. Note that the
interval archetypes can be represented either in ℑℜp, as
paralletopes, through the matrix A(m), or separately in ℜp,
as points in the midpoint and range spaces, through the
matrices Ǎ(m) and !A(m), respectively. For single-valued
data representation, i.e. in midpoint and range spaces, we
suggest to use the scatter plot matrices, parallel coordinate
plots [21,22], and percentile profile plots [2,23]. While, for
interval-valued archetypes, zoom-star plot and scatter plots
for interval data can be used [19].

The second step, which is no less important than the
first, looks at data through the archetypes by taking into
account the coefficients in the !(m) matrix. Indeed, the
γ ′

i (m) coefficients play a central role in the analysis and
have many interesting interpretations, since they are:

1. weighting coefficients for reconstructing data,

2. barycentric coordinates, and

3. values of a membership function.

1.) γ ′
i (m) as weighting coefficients. From Eq. (16), the

γ ′
i (m) coefficient vectors make it possible to reconstruct

each data point xi starting from the archetypes. Each inter-
val observation can be reconstructed in two equivalent
ways. The first one consists in combining the reconstruc-
tions in the midpoint and range spaces:

x̃′
i (m) = [ ˇ̃x′

i (m) − !x̃′
i (m), ˇ̃x′

i (m) + !x̃′
i (m)].

The second one consists in using directly the weighted
sum of the interval archetypes:

x̃′
i (m) = γ ′

i (m)A(m).

These two ways are equivalent because the weighting
coefficients γ ′

i (m) are constrained to be the same in the

two spaces and, hence, we have that ˇ̃x′
i (m) = γ ′

i (m)Ǎ(m)

and !x̃′
i (m) = γ ′

i (m)!A(m).
The γij (m) values can be interpreted as the contribu-

tion of each archetype a′
j (m) to a given statistical unit x′

i :
if γij (m) is equal to 1, the statistical unit coincides with
the archetype; while if γij (m) is equal to 0, the archetype
does not contribute to reconstruct the statistical unit at all.
More generally, each statistical unit is reconstructed thanks
to the contribution of several archetypes, proportionally to
the γij (m) values.

2.) γ ′
i (m) as barycentric coordinates. The ǎ′

j (m)’s are
located on the boundary of the convex hull of the midpoints
x̌′

i , and the !a′
j (m)’s are located on the boundary of

convex hull of the ranges !x′
i . Hence, the ǎ′

j (m)’s and the

!a′
j (m)’s are vertices of convex polytopes in the midpoint

and ranges spaces, respectively.
In these spaces, for each data point x′

i = [x̌′
i − !x′

i , x̌′
i +

!x′
i], new coordinates (λi1, . . . , λim) and (µi1, . . . , µim)

can be obtained by solving the equations:

(λi1 + · · · + λim)x̌′
i = λi1 ǎ′

1 + · · · + λim ǎ′
m, (20)

(µi1 + · · · + µim)!x′
i = µi1 !a′

1 + · · · + µim !a′
m. (21)

The coefficients (λi1, . . . , λim) and (µi1, . . . , µim) are
the barycentric coordinates [24] of x̌′

i and !x̃′
i in the

spaces having ǎ1, . . . , ǎm and !a1, . . . ,!am as bases,
respectively. The archetypes themselves have barycentric
coordinates (1, 0, . . . , 0), (0, 1, . . . , 0), . . ., (0, 0, . . . , 1).

The reconstructed data point x̃′
i (m) has barycentric

coordinates in these associated spaces as well:

(λi1 + · · · + λim) ˇ̃x′
i (m) = λi1 ǎ′

1 + · · · + λim ǎ′
m (22)

(µi1 + · · · + µim)!x̃′
i (m) = µi1 !a′

1 + · · · + µim !a′
m.

(23)

By Eq. (16), it is easy to show that the γij (m) coefficients
solve both Eqs. (22) and (23), i.e. λij = µij = γij (m).
Hence, we have that the γ ′

i (m) coefficient vectors are the
barycentric coordinates for the reconstructed points in a
common associated space. Such a space, spanned by the
archetypes a′

j (m), is always a space of real points and the
archetypes are a non-orthogonal basis of this space [11].

We note that, given the geometric properties of the
barycentric coordinates, the data points actually belong to

Table 1. Bats data set [26].

i Species Head Tail Height Forearm

1 PIPC 33, 52 26, 33 4, 7 27, 32
2 PRH 35, 43 24, 30 8, 11 34, 41
3 MOUS 38, 50 30, 40 7, 8 32, 37
4 PIPS 43, 48 34, 39 6, 7 31, 38
5 PIPN 44, 48 34, 44 7, 8 31, 36
6 MDAUB 41, 51 30, 39 8, 11 33, 41
7 MNAT 42, 50 32, 43 8, 9 36, 42
8 MDEC 40, 45 39, 44 9, 9 36, 42
9 MGP 45, 53 35, 38 10, 12 39, 44

10 OCOM 41, 51 34, 50 9, 10 34, 50
11 MBEC 46, 53 34, 44 9, 11 39, 44
12 SBOR 48, 54 38, 47 9, 11 37, 42
13 BARB 44, 58 41, 54 6, 8 35, 41
14 OGRIS 47, 53 43, 53 7, 9 37, 41
15 SBIC 50, 63 40, 45 8, 10 40, 47
16 FCHEV 50, 69 30, 43 11, 13 51, 61
17 MSCH 52, 60 50, 60 10, 11 42, 48
18 SCOM 62, 80 46, 57 9, 12 48, 56
19 NOCT 69, 82 41, 59 10, 12 45, 55
20 GMUR 65, 80 48, 60 12, 16 55, 68
21 MGES 82, 87 46, 57 11, 12 58, 63

Statistical Analysis and Data Mining DOI:10.1002/sam
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Statistical Archetypal Analysis [Wu and Tabak, 2017]

• Finds archetypal distribution as mixture of observed distribution, i.e.,

qk(x) =
n

∑
i=1

wikpi(x),

• Minimize the ‘energy distance’ between the observed and reconstructed distributions

p̂j(x) =
K

∑
k=1

hkjqk(x)

.
• Energy distance between two distributions p and q is defined as

DED(p, q) = −EX,X′∼p||X−X′|| −EY,Y′∼q||Y− Y′||+ 2EX∼p,Y∼q||X− Y||.

Pros
• Energy distance can be easily estimated from observations
• Equivalent to performing kernel archetypal analysis with

κ(p, q) = EX∼p,Y∼qk(X, Y) with k(x, y) = ||x||+ ||y|| − ||x− y||.

Cons
• archetypes are interpretable as mixture
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Archetypal Distribution Intuition
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Partial Membership Models [Heller et al., 2008]

• For a mixture model with K mixture components,

p(x |Θ, ρ) =
K

∑
k=1

ρkp(x | θk)

where ρk are the mixing proportions.
• Given indicator variables ζ = [ζ1, . . . , ζK ] where ζk ∈ {0, 1} and ∑k ζk = 1,

p(x |Θ, ρ) = ∑
ζ

p(ζ)
K

∏
k=1

p(x | θk)
ζk

where p(. . . , ζk = 1, . . .) = ρk.
• Partial membership model relaxes the constraint ζk ∈ {0, 1} to ζk ∈ [0, 1]

p(x |Θ, ρ) =
∫

p(ζ | ρ)
[

1
C(ζ, Θ)

K

∏
k=1

p(x | θk)
ζk

]
dζ

where C is a normalizing constant, and p(ζ | ρ) is a distribution over simplex.

Figure: The figures illustrate the difference between mixture model and partial membership model. The figures
show three component distributions A1, A2 and A3. For standard mixture model an observation belongs to one
and only one of these three distributions. For partial membership model, however, an observation belongs to
many possibilities depending on the membership vector ζ as in Eq. (??). For example, the figures show the
configurations (left) ζ = [η, 0.5(1− η), 0.5(1− η)] with and (right) ζ = [0.5(1− η), 0.5(1− η), η] with
η ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Exponential Family Distribution

• x is exponential family distributed if

ExpFam(x | θ) = exp(T(x)ᵀη(θ)−A(θ))h(x)

where η are the natural parameters, and T are the sufficient statistics
• For exponential family distributions, the partial membership product is also an exponential

family distribution in the same family with natural parameters

η̂ = ∑
k

ζkη(θk).

• For multivariate normal distribution,

1

(2π)d/2det(Σ)1/2 exp
(
− 1

2
(x− µ)>Σ

−1
(x− µ)

)
.

η = [Σ
−1

µ; vec(Σ−1
)] and T = [x; vec(xx>)]

where vec denotes the vectorization operator, and [· ; ·] denotes column-wise concatenation.
• Therefore, partial membership product is a multivariate normal distribution with

Σ̂
−1
= ∑ ζiΣi

−1 and Σ̂
−1

µ̂ = ∑
i

ζiΣi
−1

µi.
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Archetypal Analysis over Distributions

Given n distributions p1(x), . . . , pn(x) on Rd,

1 Define archetypal distributions q1(x), . . . , qK(x) as

qk(x) =
1

cw
k

n

∏
i=1

pi(x)wik

where W ∈ ∆.
2 Reconstruct the distributions as

p̂j(x) =
1
ch

j

K

∏
k=1

qk(x)
hkj

where H ∈ ∆.
3 Optimize the parameters W and H by minimizing

∑
j

D(p̂j(x) ‖ pj(x))

where D is a suitable divergence measure between two distributions.
4 Thus, archetypal analysis over distributions can be summarized as

min
W,H∈∆

∑
j

DKL

(
1
cj

∏
i

pi(x)∑k wikhkj ‖ pj(x)

)

where cj is the respective normalizing constant.
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Example

We solve this for multivariate normal distribution with diagonal covariance.

Archetypal distribution over 20 random bivariate normal distributions

Figure: The figure compares several methods of archetypal analysis over a set of bivariate normal distributions
(grey). The inferred archetypal distributions have been color-coded. (A) Archetypal analysis using the proposed
approach, and (B) the resulting simplex plot. (C) Archetypal analysis using kernel archetypal analysis. (D)
Archetypal analysis using statistical archetypal analysis.
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Student Scores Data [Rovira et al., 2017]

Academic grades of 287 students over 68 total courses with missing values

Figure: The figure shows the analysis of the student score dataset. (A) distributions of 100 student grades (grey)
and the inferred archetypal distributions (color-coded), (B) the resulting simplex plot (C) the resulting cost
values over different number of archetypes (D) inferred archetypes over 10 different random subsample of the
data

1 A2) students who get consistently high grades and they are rare,

2 A3) students who get consistently moderate grades,

3 A1) students who get average grades and show more variability, and

4 A4) students who show high variability in their performance.
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OpenML Data [Vanschoren et al., 2014]

Performance of 67 algorithms on 350 datasets

Figure: The figure shows the analysis of the algorithm dataset matrix. Distribution of (A) means and (B)
variances respectively of 6 inferred archetypal distributions. Each distribution is estimated from 67 points since
each archetype is a 67 dimensional distribution (color-coded). (C) The resulting simplex plot and (D) the
resulting cost values over different number of archetypes.

1 A2) dataset where all algorithms perform at a chance level,
2 A1) dataset where all algorithms perform with the highest accuracy, and almost no variance
3 A3) dataset where the performance of algorithms show significant variability.
4 A5-A6) dataset where all algorithms perform very well but they show variation in different

cross-validation folds with A6 showing more variation than A5.
5 A4) dataset where all algorithms perform moderately well, and also show some variation

over validation folds.
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Discussion

• Proposed an extension of archetypal analysis over distributions
• More interpretable than kernel and statistical archetypal analysis
• Complements interval archetypal analysis

• Only available for multivariate normal
• Requires better initialization and optimization
• Needs validation and interesting application

Thank you!
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