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Seth and Eugster [2016]

® Archetypes are prototypes, i.e., representative observations, that are ideal examples of a type
® Archetypes are interpretable since they relate to actual observations
® Archetypes are extreme in nature rather than average, for example, as in medoids

B Leaf-cutter ants (A. sexdens)

C Bats (Microchiroptera)
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A single value often does not carry all the information, e.g.,

® two scientific papers can have scores {3,3,4} and {1,4,5}
® two movies can have ratings {6,7,9} and {4,9,9}.

How do we find archetypes over distributions?
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Figure: (left) standard archetypal analysis (right) archetypal analysis over distributions

«0O0» «F)r « >

<

>

A



Standard Archetypal Analysis [Cutler and Breiman, 1994]

Given a set of n observations x1, ..., Xy,

® Define K archetypes zj, ..., zx as convex combinations of the observations, i.e.,

n
zZ = Zwikx[
i=1

where W € Ais an x k dimensional matrix with W]y = wj.

® Reconstruct the observations as convex combinations of the archetypes, i.e.,
K
)A(] = Z hkak
k=1
where H € A is a k x n dimensional matrix with [H]y; = ;.

® Optimize the parameters W and H by minimizing the error between the observations and
their respective reconstructions, i.e.,

- 2
Y lxi — %l
=

where || - || denotes the I-norm. Thus, archetypal analysis can be summarized as

min ||X — XWH]||%.
W,HeA
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Figure 1. Archetypes for Head Dimension Data.
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Kernel Archetypal Analysis [Merup and Hansen, 2012]

Use ‘kernel trick’ for distributions with Bhattacharyya coefficient.

® The cost can be rewritten as
[[X — XWH]| > = tr((1— WH)TX"X(I — WH))

where tr denotes the trace operation.
® The inner product [XTX];; = (x; | x;) can then be replaced by a positive definite kernel

[K]j = x(x,%)) = (9(x) | 9(x)),

where ¢ is a (nonlinear) mapping from R? to a feature space F with inner product x.

Pros
® Allows performing archetypal analysis in any observation space with a p.d. kernel

Cons
® Result depends on the choice of kernel
® Not knowing the explicit mapping ¢ hinders the interpretability of the archetypes
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Interval Archetypal Analysis [D’Esposito et al., 2012]

® Each element of the matrix X is an interval, i.e., [X]; = [x};, %]

® Use weighted sum and distance operation with appropriate operations on interval , i.e.,

n n
Zj = ) wiyxy and Zy = Y wick;, and
i-1 i=1

d(x,y) = max(|% =, |x —yl) = [xm — ym| + [xa — val
where x,, = (x+X)/2and x; = (X — x)/2.
® Archetypal analysis on intervals can be summarized as

min X, — X, WH| + |X; — X,WH].
WHeA

Pros
® Straighforward extension of standard archetypal analysis
Cons

® Limited to intervals not continuous distributions
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Interval Archetypal Analysis [D’Esposito et al., 2012]

Table 1. Bats data set [26].

i Species Head Tail Height Forearm
1 PIPC 33,52 26, 33 4,7 27,32
2 PRH 35,43 24, 30 8, 11 34, 41
3 MOUS 38, 50 30, 40 7,8 32,37
4 PIPS 43, 48 34, 39 6,7 31, 38
5 PIPN 44, 48 34, 44 7,8 31, 36
6 MDAUB 41, 51 30, 39 8, 11 33, 41
7 MNAT 42, 50 32,43 8,9 36, 42
8 MDEC 40, 45 39, 44 9,9 36, 42
9 MGP 45,53 35, 38 10, 12 39, 44

10 OCOM 41, 51 34, 50 9, 10 34, 50

11 MBEC 46, 53 34, 44 9, 11 39, 44

12 SBOR 48, 54 38, 47 9,11 37,42

13 BARB 44, 58 41, 54 6,8 35, 41

14 OGRIS 47,53 43,53 7,9 37,41

15 SBIC 50, 63 40, 45 8, 10 40, 47

16 FCHEV 50, 69 30, 43 11, 13 51, 61

17 MSCH 52, 60 50, 60 10, 11 42, 48

18 SCOM 62, 80 46, 57 9,12 48, 56

19 NOCT 69, 82 41, 59 10, 12 45, 55

20 GMUR 65, 80 48, 60 12, 16 55, 68

21 MGES 82, 87 46, 57 11, 12 58, 63
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Statistical Archetypal Analysis [Wu and Tabak, 2017]

® Finds archetypal distribution as mixture of observed distribution, i.e.,
n
(%) = Y wipi(x),
i=1

® Minimize the ‘energy distance’ between the observed and reconstructed distributions
K
Pit) = Y I (%)
k=1

® Energy distance between two distributions p and g is defined as

Dep(p,9) = —Exxrpl X = X'[| = Eyyrogl [Y = Y'|| + 2Exp,yng|1X = Y]|.

Pros
® Energy distance can be easily estimated from observations
® Equivalent to performing kernel archetypal analysis with
k(p, ) = Exep,y~gk(X,Y) with k(x,y) = [|x]| + |[y|| — ||x = yl|.
Cons
® archetypes are interpretable as mixture
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Partial Membership Models [Heller et al., 2008]

® For a mixture model with K mixture components,

K
p(x|®,p) = kZpkp(x | 6k)
-1

where pj are the mixing proportions.
® Given indicator variables { = [{1,...,{x] where {; € {0,1} and 3, {x = 1,

K
(x|©,p) Zp O [Tr(x]6)%
k=1

wherep(...,0k=1,...) = ok
® Partial membership model relaxes the constraint ; € {0,1} to ; € [0,1]

. [ 1 K
pxI10.0)= [1E10) | oz gy Tpxl 005

where C is a normalizing constant, and p({ | p) is a distribution over simplex.
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Exponential Family Distribution

® xis exponential family distributed if
ExpFam(x [ 0) = exp(T(x)T5(6) — A(6))h(x)

where 5 are the natural parameters, and T are the sufficient statistics

® For exponential family distributions, the partial membership product is also an exponential
family distribution in the same family with natural parameters

= ;ék’i(ek)-

® For multivariate normal distribution,

1 1 .
(27)"/2det(z) 2 F <_5(X_”)TE x _”)> '

7 =[E " wvec(T )] and T = [x; vec(xx" )]
where vec denotes the vectorization operator, and [- ; -] denotes column-wise concatenation.

® Therefore, partial membership product is a multivariate normal distribution with

ﬁil = 2@,’2,’4 and 271]2 = 2&2,’71]11‘.
i
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Archetypal Analysis over Distributions

Given n distributions py (x), ..., pu(x) on RY,
©® Define archetypal distributions g1 (x), ..., gk (x) as

= HP,

Ckzl

where W € A.
® Reconstruct the distributions as

K
H qk hk]

k=1

\f‘:.‘ —_

where H € A.
® Optimize the parameters W and H by minimizing

ZD P] Hp] x))

where D is a suitable divergence measure between two distributions.

@ Thus, archetypal analysis over distributions can be summarized as

ka:khk
WHEQAZDKL < HP || pj(x )>

where ¢; is the respective normalizing constant.
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We solve this for multivariate normal distribution with diagonal covariance

Archetypal distribution over 20 random bivariate normal distributions
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Figure: The figure compares several methods of archetypal analysis over a set of bivariate normal distributions
(grey). The inferred archetypal distributions have been color-coded. (A) Archetypal analysis using the proposed
approach, and (B) the resulting simplex plot. (C) Archetypal analysis using kernel archetypal analysis. (D)
Archetypal analysis using statistical archetypal analysis.
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Student Scores Data [Rovira et al., 2017]

Academic grades of 287 students over 68 total courses with missing values
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Figure: The figure shows the analysis of the student score dataset. (A) distributions of 100 student grades (grey)
and the inferred archetypal distributions (color-coded), (B) the resulting simplex plot (C) the resulting cost
values over different number of archetypes (D) inferred archetypes over 10 different random subsample of the
data

©® A2) students who get consistently high grades and they are rare,

® A3) students who get consistently moderate grades,

© Al) students who get average grades and show more variability, and
©® A4) students who show high variability in their performance.
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OpenML Data [Vanschoren et al., 2014]

Performance of 67 algorithms on 350 datasets
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Figure: The figure shows the analysis of the algorithm dataset matrix. Distribution of (A) means and (B)
variances respectively of 6 inferred archetypal distributions. Each distribution is estimated from 67 points since
each archetype is a 67 dimensional distribution (color-coded). (C) The resulting simplex plot and (D) the
resulting cost values over different number of archetypes.

©® A2) dataset where all algorithms perform at a chance level,
@® Al) dataset where all algorithms perform with the highest accuracy, and almost no variance
© A3) dataset where the performance of algorithms show significant variability.

® A5-A6) dataset where all algorithms perform very well but they show variation in different
cross-validation folds with A6 showing more variation than A5.

© A4) dataset where all algorithms perform moderately well, and also show some variation
over validation folds.
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® Proposed an extension of archetypal analysis over distributions
® More interpretable than kernel and statistical archetypal analysis
¢ Complements interval archetypal analysis

® Only available for multivariate normal

® Requires better initialization and optimization

® Needs validation and interesting application

Thank you!
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